تبلیغات
برق قدرت
برق قدرت
پیام مدیریت وبلاگ :
با سلام خدمت شما بازدیدكننده گرامی ، به این وبلاگ خوش آمدید . لطفا برای هرچه بهتر شدن مطالب این وبلاگ ، ما را از نظرات و پیشنهادات خود آگاه سازید و به ما در بهتر شدن كیفیت مطالب وبلاگ یاری رسانید .

rss

درباره ما
اطلاعات کلی نویسنده وبلاگ:

مسعود کرانی پسند - 29 ساله -دانشجوی کارشناسی ارشد برق قدرت -تبریز


هدف از راه اندازی وبلاگ:
تبادل اطلاعات و انتقال تجربه و دانش در صنعت برق، گردآوری مطالب علمی، ترویج فرهنگ مطالعه و پژوهش، بهره گیری از نقاط ضعف و قوت تجارب گذشته جهت بهره مندی در اقدامات آتی
ایمیل مدیر وبلاگ
آرشیو مطالب
نظرسنجی
نظر شما در باره این وبلاگ چیست





نویسندگان
صفحات اضافی
ابر برچسب ها
آمار و امكانات
آخرین بروزرسانی :
تعداد كل مطالب :
تعداد کل نویسندگان :
بازدید امروز :
بازدید دیروز :
بازدید این ماه :
بازدید ماه قبل :
بازدید کل :
آخرین بازید از وبلاگ :
  

Bulk power transmission
ارسال شده توسط مسعود کرانی پسند در ساعت 10:55 ب.ظ

Engineers design transmission networks to transport the energy as efficiently as feasible, while at the same time taking into account economic factors, network safety and redundancy. These networks use components such as power lines, cables, circuit breakers, switches and transformers. The transmission network is usually administered on a regional basis by an entity such as a regional transmission organization or transmission system operator.

Transmission efficiency is greatly improved by devices that increase the voltage, (and thereby proportionately reduce the current) in the line conductors, thus allowing power to be transmitted with acceptable losses. The reduced current flowing through the line reduces the heating losses in the conductors. According to Joule's Law, energy losses are directly proportional to the square of the current. Thus, reducing the current by a factor of 2 will lower the energy lost to conductor resistance by a factor of 4 for any given size of conductor.

The optimum size of a conductor for a given voltage and current can be estimated by Kelvin's law for conductor size which states that the size is at its optimum when the annual cost of energy wasted in the resistance is equal to the annual capital charges of providing the conductor. At times of lower interest rates Kelvin's law indicates that thicker wires are optimal, while when metals are expensive thinner conductors are indicated: however power lines are designed for long-term usage so Kelvin's law has to be used in conjunction with long-term estimates of the price of copper and aluminum as well as interest rates for capital

Engineers design transmission networks to transport the energy as efficiently as feasible, while at the same time taking into account economic factors, network safety and redundancy. These networks use components such as power lines, cables, circuit breakers, switches and transformers. The transmission network is usually administered on a regional basis by an entity such as a regional transmission organization or transmission system operator.

Transmission efficiency is greatly improved by devices that increase the voltage, (and thereby proportionately reduce the current) in the line conductors, thus allowing power to be transmitted with acceptable losses. The reduced current flowing through the line reduces the heating losses in the conductors. According to Joule's Law, energy losses are directly proportional to the square of the current. Thus, reducing the current by a factor of 2 will lower the energy lost to conductor resistance by a factor of 4 for any given size of conductor.

The optimum size of a conductor for a given voltage and current can be estimated by Kelvin's law for conductor size which states that the size is at its optimum when the annual cost of energy wasted in the resistance is equal to the annual capital charges of providing the conductor. At times of lower interest rates Kelvin's law indicates that thicker wires are optimal, while when metals are expensive thinner conductors are indicated: however power lines are designed for long-term usage so Kelvin's law has to be used in conjunction with long-term estimates of the price of copper and aluminum as well as interest rates for capital.

The increase in voltage is achieved in AC circuits by using a step-up transformer. HVDC systems require relatively costly conversion equipment which may be economically justified for particular projects such as submarine cables and longer distance high capacity point to point transmission. HVDC is necessary for the import and export of energy between grid systems that are not synchronized with each other.

A transmission grid is a network of power stations, transmission lines, and substations. Energy is usually transmitted within a grid with three-phase AC. Single-phase AC is used only for distribution to end users since it is not usable for large polyphase induction motors. In the 19th century, two-phase transmission was used but required either four wires or three wires with unequal currents. Higher order phase systems require more than three wires, but deliver little or no benefit.

The price of electric power station capacity is high, and electric demand is variable, so it is often cheaper to import some portion of the needed power than to generate it locally. Because loads are often regionally correlated (hot weather in the Southwest portion of the US might cause many people to use air conditioners), electric power often comes from distant sources. Because of the economic benefits of load sharing between regions, wide area transmission grids now span countries and even continents. The web of interconnections between power producers and consumers should enable power to flow, even if some links are inoperative.

The unvarying (or slowly varying over many hours) portion of the electric demand is known as the base load and is generally served by large facilities (which are more efficient due to economies of scale) with fixed costs for fuel and operation. Such facilities are nuclear, coal-fired or hydroelectric, while other energy sources such as concentrated solar thermal and geothermal power have the potential to provide base load power. Renewable energy sources such as solar photovoltaics, wind, wave, and tidal are, due to their intermittency, not considered as supplying "base load" but will still add power to the grid. The remaining or 'peak' power demand, is supplied by peaking power plants, which are typically smaller, faster-responding, and higher cost sources, such as combined cycle or combustion turbine plants fueled by natural gas.

Long-distance transmission of electricity (thousands of kilometers) is cheap and efficient, with costs of US$0.005–0.02/kWh (compared to annual averaged large producer costs of US$0.01–0.025/kWh, retail rates upwards of US$0.10/kWh, and multiples of retail for instantaneous suppliers at unpredicted highest demand moments).[7] Thus distant suppliers can be cheaper than local sources (e.g., New York often buys over 1000 MW of electricity from Canada).[8] Multiple local sources (even if more expensive and infrequently used) can make the transmission grid more fault tolerant to weather and other disasters that can disconnect distant suppliers.

A high-power electrical transmission tower

Long-distance transmission allows remote renewable energy resources to be used to displace fossil fuel consumption. Hydro and wind sources cannot be moved closer to populous cities, and solar costs are lowest in remote areas where local power needs are minimal. Connection costs alone can determine whether any particular renewable alternative is economically sensible. Costs can be prohibitive for transmission lines, but various proposals for massive infrastructure investment in high capacity, very long distance super grid transmission networks could be recovered with modest usage fees.

Grid input

At the power stations the power is produced at a relatively low voltage between about 2.3 kV and 30 kV, depending on the size of the unit. The generator terminal voltage is then stepped up by the power station transformer to a higher voltage (115 kV to 765 kV AC, varying by the transmission system and by country) for transmission over long distances.

Losses

Transmitting electricity at high voltage reduces the fraction of energy lost to resistance, which varies depending on the specific conductors, the current flowing, and the length of the transmission line. For example, a 100 mile 765 kV line carrying 1000 MW of power can have losses of 1.1% to 0.5%. A 345 kV line carrying the same load across the same distance has losses of 4.2%.[9] For a given amount of power, a higher voltage reduces the current and thus the resistive losses in the conductor. For example, raising the voltage by a factor of 10 reduces the current by a corresponding factor of 10 and therefore the I2R losses by a factor of 100, provided the same sized conductors are used in both cases. Even if the conductor size (cross-sectional area) is reduced 10-fold to match the lower current the I2R losses are still reduced 10-fold. Long-distance transmission is typically done with overhead lines at voltages of 115 to 1,200 kV. At extremely high voltages, more than 2,000 kV exists between conductor and ground, corona discharge losses are so large that they can offset the lower resistive losses in the line conductors. Measures to reduce corona losses include conductors having larger diameters; often hollow to save weight,[10] or bundles of two or more conductors.

Transmission and distribution losses in the USA were estimated at 6.6% in 1997[11] and 6.5% in 2007.[11] By using underground DC transmission these losses can be cut in half.[citation needed] Underground cables can be larger diameter because they do not have the constraint of light weight that overhead cables have, being 100 feet in the air. In general, losses are estimated from the discrepancy between power produced (as reported by power plants) and power sold to end customers; the difference between what is produced and what is consumed constitute transmission and distribution losses, assuming no theft of utility occurs.

As of 1980, the longest cost-effective distance for direct-current transmission was determined to be 7,000 km (4,300 mi). For alternating current it was 4,000 km (2,500 mi), though all transmission lines in use today are substantially shorter than this.[7]

In any alternating current transmission line, the inductance and capacitance of the conductors can be significant. Currents that flow solely in 'reaction' to these properties of the circuit, (which together with the resistance define the impedance) constitute reactive power flow, which transmits no 'real' power to the load. These reactive currents however are very real and cause extra heating losses in the transmission circuit. The ratio of 'real' power (transmitted to the load) to 'apparent' power (sum of 'real' and 'reactive') is the power factor. As reactive current increases, the reactive power increases and the power factor decreases. For transmission systems with low power factor, losses are higher than for systems with high power factor. Utilities add capacitor banks, reactors and other components (such as phase-shifting transformers; static VAR compensators; physical transposition of the phase conductors; and flexible AC transmission systems, FACTS) throughout the system to compensate for the reactive power flow and reduce the losses in power transmission and stabilize system voltages. These measures are collectively called 'reactive support'.

Subtransmission

Subtransmission is part of an electric power transmission system that runs at relatively lower voltages. It is uneconomical to connect all distribution substations to the high main transmission voltage, because the equipment is larger and more expensive. Typically, only larger substations connect with this high voltage. It is stepped down and sent to smaller substations in towns and neighborhoods. Subtransmission circuits are usually arranged in loops so that a single line failure does not cut off service to a large number of customers for more than a short time. While subtransmission circuits are usually carried on overhead lines, in urban areas buried cable may be used.

There is no fixed cutoff between subtransmission and transmission, or subtransmission and distribution. The voltage ranges overlap somewhat. Voltages of 69 kV, 115 kV and 138 kV are often used for subtransmission in North America. As power systems evolved, voltages formerly used for transmission were used for subtransmission, and subtransmission voltages became distribution voltages. Like transmission, subtransmission moves relatively large amounts of power, and like distribution, subtransmission covers an area instead of just point to point.[12]

Transmission grid exit

At the substations, transformers reduce the voltage to a lower level for distribution to commercial and residential users. This distribution is accomplished with a combination of sub-transmission (33 kV to 132 kV) and distribution (3.3 to 25 kV). Finally, at the point of use, the energy is transformed to low voltage (varying by country and customer requirements—see Mains electricity by country).